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ABSTRACT
We describe an algorithmic and experimental approach to
a fundamental problem in field ecology: computer-assisted
individual animal identification. We use a database of noisy
photographs taken in the wild to build a biometric database
of individual animals differentiated by their coat markings.
A new image of an unknown animal can then be queried
by its coat markings against the database to determine if
the animal has been observed and identified before. Our al-
gorithm, called StripeCodes, efficiently extracts simple im-
age features and uses a dynamic programming algorithm to
compare images. We test its accuracy against two different
classes of methods: Eigenface, which is based on algebraic
techniques, and matching multi-scale histograms of differ-
ential image features, an approach from signal processing.
StripeCodes performs better than all competing methods
for our dataset, and scales well with database size.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Management Ap-
plications—Image databases; J.3 [Computer Applications]:
Life and Medical Sciences—Biology

General Terms
Ecology, biometrics, image databases, edit distance

1. INTRODUCTION
In wild animal populations, collecting behavioral data about

a species often entails identifying individual animals be-
tween sightings taken at different places and times. This
is a primitive operation in ecological analysis that underlies
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broader aspects of animal behavior research [24, 26]. Elec-
tronic tracking devices embedded in animals are one ap-
proach to identifying individual animals, but can be pro-
hibitively expensive and difficult to design for field condi-
tions, and involve considerable cost and risk for larger ani-
mals [10,33]. Researchers are therefore left with no alterna-
tive other than to manually record data about individual an-
imals in the field using methods such as manual visual identi-
fication from photographs or video [4, 24, 32], genetic mark-
ers in excrement [27], or capture-recapture techniques [20].
Advances in hardware and the corresponding drop in prices
of digital cameras have increased the availability of digital
photographs of wild animal sightings at high resolutions and
qualities, making fully-automatic or computer-assisted ani-
mal identification an attractive approach.

We describe a technique for identifying individual ani-
mals from their coat markings in typically noisy field pic-
tures (non-cooperative subjects, coat deformations, occlu-
sion, and variations in exposure, scale, and perspective).
Working with field ecologists, we collected a dataset under
these conditions for automatic individual animal identifica-
tion in two species of zebra in Kenya, to augment the efforts
of professionally trained field assistants. The techniques we
develop are applicable to animals with prominent morpho-
logical characteristics like stripes or large patches1, and are
intended to be part of a cost-effective, computer-assisted
individual animal identification system. Our algorithm cap-
italizes on the high resolution of modern field pictures (typ-
ically 8 or more megapixels with commodity hardware) to
offer excellent retrieval accuracy, transparency in terms of
visual feedback on image matches (i.e., the algorithm is not
a black box), and extremely simple implementation.

We approach the problem by first extracting a set of dis-
criminative mathematical (as opposed to biological) features
from an image of an animal, tolerant to noise from variances
in scale and exposure, occlusion, partial deformations, and
mild shear. These features allow us to efficiently and ro-
bustly compare images in a database by their appearance.
We then develop a distance measure between a pair of fea-

1Although we only present results for zebra, preliminary
field tests suggest that the method can successfully be ap-
plied to giraffe.
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Figure 1: Structure of the image database: contents,
query, and output.

ture sets taken from two images, and an efficient algorithm
for computing it, that allows us to judge how different the
coat markings depicted in two pictures are. A lower distance
between images of two animals signifies a higher chance that
the two animals are the same. This measure is used to de-
termine whether an animal just photographed in the wild
exists in a database of prior sightings.
The lack of availability of an open-access dataset, or source

code, for individual animal identification seems to have been
an impediment to progress in this area, and is likely the rea-
son why prior studies have been unable to test competing
classes of methods [5, 11, 22]. We attempt to rectify this by
not only releasing our dataset and code, but by performing
one of the first comparative studies of three different classes
of techniques (PCA, edit distance, and differential image
features). We have published our dataset on two species of
zebras publicly, with many annotations (GPS coordinates,
date and time, camera model, focal length of image, expo-
sure, etc.).2

2. PROBLEM DEFINITION
LetD be a database of animal coat marking images q1, ..., qN .

Each image is associated with an animal identifier ai. Indi-
vidual animal identification requires a ranking algorithm A
that operates directly on a query image Q 6∈ D to produce
a ranking.

A : D ×Q → R

where R is a permutation (ranking) of the original set of
images D based on similarity to the query image Q. The
similarity should return an approximate distance between
the coat markings of animals.
(Optimal ranking) For a query image qi of a known animal

ai, an optimal ranking algorithm will always return qj at the
highest rank where aj = ai.

AOPT (D × qi) → 〈qj , ...〉 if ai = aj

In general, for a query image of animal ai, we want to min-
imize the rank of a database image with the same animal
identifier. The ranking algorithm therefore needs to model
the similarity (or distance) between animal coat markings,
and not necessarily images, which can vary substantially for
the same animal.
A line of research in population biology examines the rela-

tionship between morphological characteristics of an animal
and genetic traits or physiological processes [6, 9]. A natu-
ral question would be to ask whether the distance function
we learn above can be used as an approximation of ‘mor-
phological distance’ between individual animals. It should
be noted that if the algorithm is truly a distance function

2All code and data, as well as a GUI frontend, may be down-
loaded from http://code.google.com/p/stripespotter/

on the bodily markings of individual animals (assuming one
exists), then it is optimal by the definition above. However,
if it is optimal by the definition above, then it is not nec-
essarily a true distance function on the bodily markings of
individual animals. This can be easily proved by noting that
randomly permuting the lower ranks of the output of an op-
timal ranking function does not affect its optimality, even
when it would destroy the true ordering by morphological
distance. Since we cannot hope for an optimal algorithm,
we instead aim to minimize the rank of the correct animal
in the ranking. However, given the impossibility of any ex-
act methods for characterizing the phenotypic markings of
animals, a suboptimal but well-performing ranking function
can serve as a useful, if imperfect, biological index of mor-
phological similarity between animals.

3. ANIMAL RECOGNITION
A number of ecological datasets on animal behavior in the

wild are currently compiled using variations of the following
basic workflow.

1. Scouts or camera traps photograph animals at various
locations and times.

2. A trained field assistant codes each image using ad-hoc
codes to describe various physical features.

3. A database of reference image codes is searched using
the textual code for the observed animal.

4. If the database contains a match for the code, the field
assistant verifies that the query and reference animals
match by visually comparing images, after which the
observation is recorded.

5. If the database does not contain a match, then it is
presumed that the animal is new, and is added to the
database with its code. If there was a human error in
coding the photograph, then this is a false positive for
a new animal (i.e., rejecting a previously seen animal
from the database).

Errors in the identification process can have serious conse-
quences. False positives can cause over-counting of an en-
dangered species. They can also cause missing animal as-
sociation data, which as a form of sampling error can cause
non-trivial biases in higher-order analysis, such as network
analysis [8]. False negatives (i.e., not identifying a new ani-
mal as one) also introduce errors in behavioral analysis, and
can be triggered by changes in an animal’s appearance due
to growth, aging, pregnancy, and scars from fighting.

We simplify the workflow described above by attempt-
ing to eliminate the ad-hoc manual coding process, which
is time-consuming and the primary source of error. In its
place, we describe a ranking algorithm for an image database
that operates directly on a query image. An effective rank-
ing algorithm will rank the correct reference animal highly,
which would reduce the false positive rate. On the other
hand, drastic changes in an animal’s appearance can make
it impossible for even humans to tell if the animal has been
observed before, so we focus on minimizing the rank of the
correct animal if it exists in the database, as opposed to de-
termining whether an animal exists in the database or not.

3.1 Image acquisition
Our procedure starts with an image of the region of inter-

est (ROI) of an animal, manually cropped “as consistently



as possible,” but subject to some variation.3 Unlike the ap-
proach of Foster et al. [11] and Burghardt and Campbell [5],
we do not place any constraints on where the ROI should
be located. We do, however, assume that the animal being
identified has coat markings of a small number of distinctive
colors, and relatively large and prominent morphological fea-
tures (e.g., stripes in zebras and tigers, or large patches in
a giraffe). Specifically, regions of each color should be ac-
curately separable by a color segmentation algorithm (see
Cheng et al. [7] for a review). We also assume that image
rotation is not a significant factor, or that the image has
been rotation-aligned in a consistent way. Coincidentally,
a recent paper on unsupervised image region segmentation
used zebra images as a test dataset [18]. We leave the in-
corporation of such methods to future research, since they
introduce an additional source of error.
Assuming that the coat marking has C principal colors,

the image is first filtered into k horizontal bands. Within
each band, we retain a single summary row of pixels that is
their average value in the column, yielding an image of 1/kth

the height of the original. This is done to accommodate
small vertical shifts in the cropping process (horizontal shifts
are accounted for by the matching algorithm). Each row of
the resultant image is thresholded so that the pixel at each
column contains a principal color of the animal’s coat at
that point. Since we deal with zebras, median thresholding
segments the image into two colors. Figure 2 shows the
feature extraction process visually.

3.2 StripeCodes: animal coat features
Starting with a C-color thresholded image, as shown in

Figure 2(c), we read off k rows of C-ary values (C = 2 for
zebras and giraffe) in run-length encoding [21]. This yields
a sequence of size n of (color, length) values, denoted:

X = 〈(c1, l1), ..., (cn, ln)〉 , ci ∈ {1...C}, li > 0

To impose scale invariance, we perform the following trans-
formation on X:

li =
li

li−1
, i > 1

We express each li as a ratio of its length to that of the
previous color block, and drop the first color block from
the sequence. We call X a StripeString. As a sequence of
ratios of lengths, by definition, it is preserved under affine
transformations such as shear, or in practice, tolerant to
small changes in perspective. Furthermore, it is also tolerant
to occlusion; for example, if the left part of the image is
clipped, the remainder of the resultant sequence will still
match the suffix of the original sequence, with at most the
first two ratios being altered.
An image of an animal is therefore represented by an or-

dered set (e.g., top of animal to bottom) of StripeStrings,
which we call a StripeCode. The space complexity of this
representation for an image is proportional to k multiplied
by the average number of color blocks in a row. Simply put,
in zebras, it is proportional to the number of stripes in the
region of interest.4

3In our study, instructions given to the user performing the
cropping, i.e., a field assistant, were to crop the image to a
consistent area of the zebra’s anatomy across pictures.
4Note that stripe density varies dramatically between two
species of zebra: Plains and Grevy’s.

3.3 Distance function
Assuming that exactly the same portion of the animal’s

body was consistently cropped as the region of interest across
photographs, and that the animal was photographed at the
exact position in its walking gait as a stored picture, we
could directly compare two sets of StripeStrings to deter-
mine how similar they are. Since these are unreasonable
assumptions, we develop an approximate distance function
on two StripeStrings using a variation of the edit distance
algorithm for two strings. This allows us to partially match
two StripeStrings while taking into account factors such as
translation (caused by inconsistent cropping of the ROI)
and localized deformations (caused by physical deformations
of the animal’s coat during movement). In principle, our
approach is inspired by Blum’s original shape representa-
tion scheme [3], but the specific underlying methods we use
to implement it are different. The distance between two
StripeCodes is defined as the average of the distance be-
tween corresponding StripeStrings.5

We use the notation of Marzal and Vidal [17]. Given two
StripeStrings X = 〈x1, ..., xM 〉 and Y = 〈y1, ..., yN 〉, where
xi = (ci, li) and yj = (c′j , l

′
j) are color blocks, we seek a

transformation of X to Y that minimizes a cost function.
The transformation is defined as a sequence S of edit oper-
ations, where each edit operation Si = (a, b) operates on a
pair of color blocks or the null string λ.

S = 〈S1 = (a1, b1), ..., SP 〉 (1)

ai ∈ {X ∪ λ}, bj ∈ {Y ∪ λ}, Si 6= (λ, λ)

The cost of a single edit operation Si = (a, b) is defined as
γ(a → b), subject to the conditions above.

γ(a → b) =











D if a = λ or b = λ

∞ if ca 6= cb

1− min(la,lb)
max(la,lb)

if ca = cb

(2)

D is a constant insertion/deletion cost, and (ca, la) and (cb, lb)
are the color blocks corresponding to a and b if neither is
the empty string. Note that 0 < γ(a → b) ≤ 1 if a, b 6= λ
and ca = cb. Also note that the function is symmetric, i.e.,
γ(a → b) = γ(b → a), and that γ(a → a) = 0 if a, b 6= λ.

The cost function above can be trivially extended to the
entire edit sequence of length P , defined in Equation 1.
This yields the total cost of aligning two StripeStrings us-
ing a given edit sequence as the sum of costs of each ele-
ment in the edit sequence S. The edit distance between two
StripeStrings is then the minimum cost achievable over all
possible editing paths.

d(X,Y ) = min
S=〈S1,...,SP 〉

P
∑

i=1

γ(Si) (3)

Marzal and Vidal [17] have noted that an edit distance com-
puted using Equation 3 is not always appropriate for match-
ing strings of different lengths because the final edit cost
does not take the lengths of the strings into account; longer
strings will generally have a higher cost associated with their
matching. The authors propose the use of a normalized edit
distance measure dN , where the edit cost of two strings is
divided by the length of the edit path (which ranges between

5Using the average was found to be preferable over other
summarization functions, like the minimum.
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Figure 2: Feature extraction process. Typical image processing errors can be seen in the top right and
leftmost portions of the difference image.

M and M +N for M ≤ N).

dN (X,Y ) = min
S=〈S1,...,SP 〉

∑P

i=1 γ(Si)

P
(4)

However, minimizing the distance in Equation 4 is not nec-
essarily the same as minimizing the un-normalized cost in
Equation 3 and then dividing by the length of the resultant
editing path, a procedure known as post-normalization [17].
Instead, we used an iterative, unbiased fractional program-
ming algorithm described by Vidal et al. [29] to directly
compute the normalized edit distance. In our experiments,
however, we found that editing paths and costs rarely var-
ied significantly between post-normalization and the unbi-
ased algorithm. Since the unbiased algorithm generally has
a larger constant factor, we use post-normalization as an
approximation in practice.
A fractional programming algorithm to compute Equa-

tion 4 uses an inner loop that computes Equation 3 along
the way using the standard dynamic programming method
for edit distance [31]. We create a dynamic programming
matrix Z(M+1)×(N+1), which is filled in as follows.

Z[1, n] = (n− 1)D, ∀n

Z[m, 1] = (m− 1)D, ∀m

Z[m,n] = min











Z[m− 1, n] +γ(λ, (c′n, l
′
n)),

Z[m,n− 1] +γ((cm, lm), λ),

Z[m− 1, n− 1] +γ((cm, lm), (c′n, l
′
n))

(5)

The matrix is filled row by row and the cost of the optimal
alignment is contained in cell Z[M + 1, N + 1]. By storing
which case of Equation 5 was selected at each cell, back-
tracking from cell Z[M,N ] returns the optimal edit path.
The cost function γ from Definition 2 defines a substitution
matrix for an edit distance computation. More formally, for
any given pair of StripeStrings, the combination of γ and D
define the StripeCode substitution matrix if the (otherwise
numeric) li values are treated as symbols.
Figure 3 shows the edit path taken to align two StripeStrings

in our dataset, with D = 0.6. Horizontal and vertical bars
in the edit path represent insertions and deletions that in-
cur cost D, and diagonal bars represent matches. Notice
that different colors are never matched because of the high
penalty associated with such an action.
Finally, the complexity of the distance algorithm has some

unique features in the animal identification domain. If M

Figure 3: An example of aligning two StripeStrings
using dynamic programming.

andN are the number of color blocks in a pair of StripeStrings,
the post-normalized edit distance can be computed using dy-
namic programming in O(M ·N) time and O(M ·N) space.
The fractional programming formulation for computing the
normalized edit distance is an iterative procedure that runs
the unnormalized edit distance algorithm for (usually) a very
small number of iterations. However, M and N are both
bounded by the number of distinctive color patches (stripes,
in our case) in the ROI, and can be effectively considered
constant for a given animal species. The efficiency of the
algorithm is therefore heavily reliant on a particular imple-
mentation.

4. RELATED WORK
The need for individual animal identification in ecology

and field biology has been long recognized, as has the te-
dious and error-prone nature of the task when performed
manually [14]. There are three broad categories of meth-
ods: those designed for humans to follow manually [24, 32],
semi-automatic methods developed with a specific species
in mind [1, 12, 15], and semi-automatic methods that can
be applied to a class of species that share similar morpho-
logical characteristics [5, 22]. Our approach falls in the last
category.

Intuition would suggest that obvious candidates for ani-
mal recognition algorithms are human biometric identifica-
tion techniques like fingerprint and face recognition algo-
rithms. A major difference from human biometric identi-
fication is that wild animals are almost never cooperative,
resulting in large pose and occlusion variances in the images



(a) Regular photo (b) Overlapping animals (c) Occlusion, shadows (d) Skew, species variation

Figure 4: Typical images from our dataset, with the cropped ROI (inset). All four images are of different
animals. Image 4(d) is E. grevyi, an endangered species of zebra with higher stripe density.

of even a single animal. Furthermore, the coat patterns of
an animal can be altered drastically by attacks from other
animals, disease, or pregnancy. For zebras, Foster et al. [11]
describe why fingerprint recognition algorithms are inappro-
priate. Human face recognition algorithms, however, are
more generic, and we test one such method here. Eigenface
was developed by Turk and Pentland [28], and uses principal
component analysis and covariance between image matrices
to recognize faces.
Ravela and Gamble [22] use multi-scale histograms of dif-

ferential image features to identify individual salamanders.
In an initial preprocessing stage, the image is treated as a
three-dimensional intensity map and filtered with invariant
combinations of specific Gaussian derivative operators [23],
at multiple scales. The resultant image features are then
binned into a histogram. Comparing two images in a database
scan is reduced to computing an inner product between
two such histogram vectors, which is a very efficient pro-
cess. However, the use of multi-scale histograms is essen-
tially a black box, with little meaningful feedback available
to the user. This could be a disadvantage when developing a
computer-assisted identification system, since the user does
not get any feedback beyond a similarity score.
Other more sophisticated approaches include that of Burghardt

and Campbell [5], who use successive video frames to map
a two-dimensional image onto a three-dimensional model of
the animal’s body. Our algorithm is much simpler, and does
not require either video or a three-dimensional model of the
animal’s body. Foster et al. [11] present partial details of a
zebra identification system, but require the user to manually
select six pre-defined points on each image, corresponding
to specific parts of the zebra’s body. In comparison, our
method simply requires the user to draw a box around any
(presumably distinctive) part of the animal’s body, and is
not specifically tailored to specific features of zebra stripes.
Other approaches exploit features of specific species of ani-
mals. Curve-extraction and matching, for example, has been
used to identify individual dolphins [12] and elephants [1].
In principle, a multitude of approaches in pattern recog-

nition could be applied to the individual animal recognition
problem. Shape matching is an obvious candidate for ani-
mals with large, prominent coat markings [19]. While these
might ultimately be the best performing approaches, we
demonstrate in this paper that a simple approach based on
dynamic programming is both transparent (i.e., yields visual
feedback for a human operator), and performs on par with
the multi-scale histograms described by Ravela and Gam-
ble [22]. Other sophisticated object recognition approaches
include shape contexts [2] and shock graphs [25].

5. DATASET
We collected our dataset over a period of seven days at the

Ol’Pejeta Conservancy in Laikipia, Kenya, using typical field
procedures in ecological data collection. The broader re-
search goal was to collect accurate individual identifications,
and therefore accurate association data, for network analysis
of two different zebra populations in the area [26]. We used
cheap, off-the-shelf digital SLR cameras and 300mm zoom
lenses. Each day, we made a semi-random circuit through
the 90,000 acre nature conservancy, which contains several
hundred wild Plains zebras, and fewer than 20 endangered
Grevy’s zebras (some of which are included in our dataset).
Two people were stationed on top of the vehicle to take pic-
tures while the driver circled around individual groups of
zebras, so as to capture both flanks of the animal.

We collected as many pictures as possible of each flank of
an animal in different positions in its natural walking gait.
As a result, a number of pictures are quite similar. A pro-
fessionally trained field assistant identified the images based
on a database of prior sightings stretching back almost ten
years. All but a few zebras were reliably identified. The
manual identification method involves assigning each zebra
an ad-hoc code based on the pattern of stripes along its
shoulder. These (textual) codes are then fed into a stock
photo organizing program that searches metadata for a sim-
ilar code string. The final match is made by direct visual
observation by a professional.6 We determined after manual
identification that several animals were observed on multi-
ple days, which makes our dataset more representative of
intended usage.

Figure 4 shows typical pictures, and manually cropped
ROIs, from our dataset. In particular, they illustrate the
difficulty of automatic animal segmentation and the prob-
lems associated with perspective skews.

6. EXPERIMENTAL RESULTS
We measured the accuracy of three animal recognition

algorithms: Eigenface [28], the CO-1 algorithm based on
multi-resolution histograms of differential image features [22],
and the method we propose in this paper: StripeCodes. As
the number of unique animals in the database grows, the
accuracy of any algorithm is likely to suffer. We therefore
chose the number of unique animals in the database as the
primary independent variable for our analysis. Furthermore,
analysis is restricted to animals that are already contained
in the database, since it is difficult to define accuracy (and

6This is only tractable manually because a trained profes-
sional can distinguish a mismatch very quickly.
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Figure 5: Performance of various algorithms.

efficacy in general) when an animal has never been observed
before.

6.1 Testing Methodology
Assume that the dataset consists of a total of I images ofA

different animals (I > A). In our dataset, almost all animals
have images of both their flanks, but we treat each flank as
a different animal. This is because zebra stripe formation is
a chaotic process which is not fully understood [13], so there
is no basis for assuming symmetry. Our evaluation method-
ology has two independent parameters: ipa, which specifies
the images per animal contained in the database, and N ,
the number of unique animals in the database. Keeping a
fixed number of the most recent images of each animal in
a production database is desirable not only for efficiency in
database scans, but also as a form of temporal smoothing to
account for natural changes in the animal’s appearance.
For fixed values of ipa and N , the following procedure

samples uniformly from all possible database and query pairs,
and returns the primary evaluation measure: the rank of the
correct animal.

1. Choose N ≤ A animals at random.

2. For each animal a, choose ipa images randomly and
add to the database.

3. From all the remaining images of theN animals, choose
an image randomly as the query image.

4. Rank each animal in the database by the minimum dis-
tance of a database image to the query image. Return
the rank of the correct animal.

We use three statistics over many random iterations of
the loop above to evaluate algorithm performance at each
value of N and ipa: the mean reciprocal rank (MRR), pop-
ular in text information retrieval [30], the median rank of
the correct animal, and the average query time of our im-
plementation. Note that this puts the Eigenface method at
somewhat of a disadvantage, since we used a Matlab imple-
mentation of it, instead of the native C++ implementations
of other methods.

6.2 Results
We set N to be successive fifths of the dataset size, and

report results at an ipa value of 1. We used 5,000 random it-
erations for each pair of ipa and N values, for all algorithms.

The baseline used was a random (uniform) permutation of
the ranks of the animals in the database. For the CO−1 al-
gorithm, we used histograms at 4 different scales, proceeding
in half-octaves as in the original study [22], and 10 bins for
each feature. All runs were performed on an AMD Athlon
x2 processor with 2 GB of RAM running Ubuntu Linux.

6.2.1 Accuracy
Figure 5 shows the performance of all algorithms for ipa =

1. Note that a lower median correct rank indicates better
performance, but a higher MRR is considered better. An
optimal algorithm would always return the correct animal at
rank 1, so its MRR would be 1, with sub-optimal algorithms
having an MRR strictly less than 1. The MRR places a
greater emphasis on searches where the correct animal is
closer to the top of the result list. This is in contrast to,
for example, the mean rank of the correct animal, which
is significantly affected by outlier queries (i.e., where the
correct animal is closer to the bottom of the result list).
The median correct rank is more indicative of performance
that might be perceived by a human.

The StripeCode algorithm, while being the simplest to im-
plement, also outperforms all the other methods. Its median
correct rank stays consistently low as the database grows.
Even with 85 animals in the database, its median correct
rank is less than 5. The MRR curve as the database grows
is also consistently higher than the closest competitor. The
poor performance of Eigenface is not surprising, given that
it was originally developed for spatially aligned, exposure-
controlled images of human faces.

The actual query time of our implementation is, however,
higher than competing methods because of the relatively
expensive edit distance computation. Although it grows lin-
early, the growth is much faster than the CO-1 algorithm.
This is not surprising, because a distance computation be-
tween two images in the CO-1 algorithm is reduced to (after
preprocessing) computing an inner product between two rel-
atively small numerical vectors, a highly efficient procedure
on modern processors. StripeCodes are inherently slower,
since they share the same foundation as sequence alignment
algorithms used in bioinformatics. A number of modern
technologies such as GPU computing have resulted in im-
pressive performance gains for edit distance-like computa-
tions [16]. Our implementation, in contrast, is quite plain
and could be greatly improved by implementing these mod-
ern computational techniques. Furthermore, the database



(a) D = 0.1

(b) D = 0.5

Figure 6: Comparing stripes from two images of
the same zebra. Red blocks in the left image are
matched to blocks in the right image, with a brighter
color indicating a lower cost. Black and white blocks
in the left image represent insertions and deletions.

search itself is trivially parallelizable. We also note that the
one-time feature extraction from an image is not included in
Figure 5. The average time to extract a StripeCode from an
image was less than a second, whereas the CO-1 algorithm
took an average of 8.1 seconds.

6.2.2 Transparency
Unlike the two other algorithms we tested, StripeCodes

can supply human-interpretable visual feedback on why two
images match. In a computer-assisted system, which com-
prises the majority of individual animal identification use
cases, this is essential in helping a human operator make
the final decision about a match. To visualize a match be-
tween two images, we can plot the edit paths of each pair
of StripeStrings as a heat map. This is illustrated in Fig-
ure 6, where a reference image is displayed side-by-side with
another image of the same animal. Each color block in the
reference image retains its original color if it was omitted as
part of the optimal dynamic programming path. If it was
not deleted, the block is colored red according to the cost
incurred for the optimal path. We used k-means clustering
on costs to segment them into four discrete shades of red,
with brighter colors representing better matches.
To the best of our knowledge, ours is the only method

where such visual feedback is available to the user. It can
also be used to demonstrate the effect of the D cost on the
optimal editing path, as we do in Figure 6. For a low value
of D = 0.1, insertions and deletions are favored over match-
ing color blocks of different lengths. At a higher D value,
insertions and deletions become more expensive, and blocks
are matched even if they incur a relatively higher cost. We
found values in the range 0.4 ≤ D ≤ 0.6 to be effective for
our dataset.

6.2.3 Follow-up test
In order to account for natural aging and appearance

changes in animals, we ran a follow-up test in the same area
13 months after the original dataset was collected. We tested
the StripeCodes algorithm against the CO-1 algorithm on 83
new Grevy’s zebra photos taken over a 3 day period while
driving fixed routes. Note that the Grevy’s zebra, shown in

Figure 4(d), has a higher stripe density than the more com-
mon Plains zebra and is therefore more susceptible to noise.
Testing with an ROI located on the flank of the zebra, and
using a paired t-test, we found that StripeCodes outper-
formed CO-1 with t = 3.85 and df = 82 for p < 0.0002. The
means on an ordinary t-test were 9.2 ± 1.3 (StripeCodes)
and 15.3± 1.7 (CO-1).

7. CONCLUSION
We have developed a similarity algorithm for comparing

animal coat markings across noisy images, designed to be
a part of a computer-assisted system for individual animal
identification. Our StripeCode algorithm is based on a novel
feature extraction and matching method that capitalizes on
the high resolution of modern digital cameras, and offers a
number of benefits over other approaches:

• It offers state of the art retrieval performance, while
being extremely simple to implement, and is tolerant of
scale, exposure, occlusion, and mild perspective skews.
Since it can be seen as a variant of sequence alignment
algorithms used in bioinformatics, implementations of
it can directly benefit from numerous algorithmic and
hardware optimizations developed for algorithms like
the Smith-Waterman algorithm [16].

• It is applicable to any animal with prominent coat
markings consisting of relatively large morphological
features and a small number of distinctive colors. Some
examples are zebras, tigers, giraffe, and kudu.

• It offers visual feedback to a human user, essential as
part of a computer-assisted system, on why two images
of animal coat markings are similar.

We look forward to augmenting our open-access datasets
in the future with libraries of other species, such as giraffe,
as well as repeat sightings of the animals currently included.
By releasing our code and data publicly, we hope to offer a
common framework for the comparison of future algorithms.
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